Advanced Logic

Table of Contents

Exercise class 1

Universal validity examples

1

1a

W = {a₁…a₇}. R = {(a₁, a₂), (a₁, a₃), …}. V(p) = {a₁, a₂…}, V(q) = {a₂, a₃…}.

Valuation can also be written as V(a₁) = {p}, etc.

1b

1b i

M, a₁ ⊨ □ □ (p ∨ q)

1b ii

M, a₂ ⊨ ◇ q → ◇ ◇ q

1d

Change V by making p true in all states.

3

3a

⊨ □ (p → q) → (◇ p → ◇ q)

Remember: □ φ is true if no successor, ◇ φ is false if no successor.

3b

⊨ □ (p ∧ q) → (◇ p ∧ ◇ q)

3c

□ (□ p → p) → □ p

No. Counterexample:

Third

Dot code
digraph g {
  rankdir="LR"
  1 -> 2
  2 -> 3
  3 -> 4
}

4

First, draw a picture:

Fourth

Dot code
digraph g {
  1 [label="1", xlabel="p"]
  2 [label="2", xlabel="p"]
  1 -> 3
  1 -> 4
  2 -> 1
  3 -> 2
  3 -> 3
  4 -> 3
}

Then, create a tree:

Fifth

Dot code
digraph g {
  root [label="M, 1 ⊨ ◇ □ ◇ p", xlabel="Turn: V"]
  l11 [label="M, 4 ⊨ □ ◇ p", xlabel="Turn: F"]; root -> l11
  r11 [label="M, 3 ⊨ □ ◇ p", xlabel="Turn: F"]; root -> r11

  // right branch
  r21 [label="M, 3 ⊨ ◇ p", xlabel="Turn: V"]; r11 -> r21
  r31 [label="M, 2 ⊨ p."]; r21 -> r31; r31 -> r41; r41 [label="Verifier wins."]
  r32 [label="M, 3 ⊨ p."]; r21 -> r32; r32 -> r42; r42 [label="Falsifier wins."]

  r22 [label="M, 2 ⊨ ◇ p", xlabel="Turn: V"]; r11 -> r22
  r33 [label="M, 1 ⊨ p."]; r22 -> r33; r33 -> r43; r43 [label="Verifier wins."]

  // left branch
  l11 -> r21
}

We cannot influence falsifier here since we play as verifier (trying to show that it holds). But no matter what falsifier does, verifier has a winning strategy.