Exercise 5
2b
Show validity of: [a*] ↔ φ ∧ [α][α*]φ
- Take a PDL model M = ((W,R),V) and let x ∈ W
- Implication left-to-right:
- assume x ⊨ [a*]φ
- so for every y ∈ W such that (x,y)∈Rα∗, y ⊨ φ
- because M is a PDL model, Rα∗=(Rα)∗=Rα0∪Rα1∪Rα2…
- So Rα0=Id⊆Rα∗ so (x,x)∈Rα∗ so x ⊨ φ.
- To prove x ⊨ [α][α*]φ, take u ∈ W such that (x,u)∈Rα1.
- Aim to show u ⊨ [α*]φ
- Take state v ∈ W such that (u,v)∈Rα∗
- We have (x,u)∈(Rα;Rα∗)⊆Rα∗
- So (x,v)∈Rα∗ so v ⊨ φ (because x ⊨ [α*]φ)
- Other way is similar.
4
a
δR^¬pR^acRb∪acR¬p;b∪acR(¬p;b∪ac)∗:R¬p;b∪ac0R¬p;b∪ac1R¬p;b∪ac2RpRδ=while ¬p do b∪ac={(2,2),(3,3),(4,4)}=Ra;Rc={(1,2),(2,3),(4,3)};{(3,1)}={(2,1),(4,1)}=Rb∪Rac={(3,4),(3,2),(2,1)}∪{(2,1),(4,1)}={(3,4),(3,2),(2,1),(4,1)}={(2,2),(3,3),(4,4)};{(3,4),(3,2),(2,1),(4,1)}={(2,1),(3,4),(3,2),(4,1)}={(1,1),(2,2),(3,3),(4,4)}={(2,1),(3,4),(3,2),(4,1)}=R¬p;b∪ac1∪{(3,1)}={(1,1)}={(1,1),(2,1),(4,1),(3,1)}
b
M ?⊨ [δ]p → p
- No.
- For example, 2 ⊨ [δ]p because (2,1)∈Rδ and 1 ⊨ p, but 2 ⊭ p.