Show validity of: [a*] ↔ φ ∧ [α][α*]φ
$\begin{aligned} \delta &= \text{while $\lnot p$ do $b \cup ac$} \\ \hat{R}_{\lnot p} &= \{(2,2), (3,3), (4,4)\} \\ \hat{R}_{ac} &= R_{a}; R_{c} = \{(1,2), (2,3), (4,3)\}; \{(3,1)\} \\ &= \{(2,1), (4,1) \} \\ R_{b \cup ac} &= R_{b} \cup R_{ac} = \{(3,4), (3,2), (2,1) \} \cup \{(2,1), (4,1)\} \\ &= \{(3,4), (3,2), (2,1), (4,1)\} \\ R_{\lnot p; b \cup ac} &= \{ (2,2), (3,3), (4,4) \}; \{(3,4), (3,2), (2,1), (4,1) \} \\ &= \{(2,1), (3,4), (3,2), (4,1) \} \\ R_{(\lnot p; b \cup ac)*}: R_{\lnot p; b \cup ac}^{0} &= \{(1,1), (2,2), (3,3), (4,4) \} \\ R_{\lnot p; b \cup ac}^{1} &= \{(2,1), (3,4), (3,2), (4,1)\} \\ R_{\lnot p; b \cup ac}^{2} &= R_{\lnot p; b \cup ac}^{1} \cup \{(3,1)\} \\ R_{p} &= \{(1,1)\} \\ R_{\delta} &= \{(1,1), (2,1), (4,1), (3,1) \} \end{aligned}$
M ?⊨ [δ]p → p