Advanced Logic

Table of Contents

Homework 1

1

a

b

Game tree

If Verifier chooses the left branch (M, y ⊨ q ∧ ◇ p), he always wins.

Graphviz code
graph t {
t [label="M,v ⊨? ◇ (q ∧ ◇ p)", xlabel="V's turn"]
tl [label="M,y ⊨? q ∧ ◇ p", xlabel="F's turn"]; t -- tl
tll [label="{ M,y ⊨ q | Verifier wins }", shape="Mrecord"]; tl -- tll
tlr [label="M, y ⊨? ◇ p", xlabel="V's turn"]; tl -- tlr
tlrn [label="{ M, z ⊨ p | Verifier wins. }", shape="Mrecord"]; tlr -- tlrn

tr [label="M, v ⊨? q ∧ ◇ p", xlabel="F's turn"]; t -- tr
trl [label="{ M, v ⊭ q | Falsifier wins }", shape="Mrecord", xlabel="V's turn"]; tr -- trl
trr [label="M, v ⊨? ◇ p", xlabel="V's turn"]; tr -- trr
trrl [label="{ M, v ⊭ p | Falsifier wins. }", shape="Mrecord"]; trr -- trrl
trrr [label="{M, y ⊭ p | Falsifier wins.}", shape="Mrecord"]; trr -- trrr
}

2

a

b

3

We aim to show that F ⊨ p → □ ◇ p iff F is symmetric: ∀ x, y ∈ W (Rxy → Ryx).

4

a

Model A Model B Model C

Model A diagram

Graphviz code
digraph g {
a -> b
b -> a
a -> c
b -> d
}

Model B diagram

Graphviz code
digraph g {
1 -> 2
2 -> 1
1 -> 3
1 -> 4
}

Model C diagram

Graphviz code
digraph g {
1 [label="#"]
1 -> b
}

b

c

Because the states a ∈ A and 1 ∈ B are not modally equivalent as shown in exercise 4b above.

d

Take the set Z = {(a, #), (b, #), (c, b), (d, b)}. We claim that Z is a bisimulation, and (a, #) ∈ Z, therefore they are bisimilar. No proof is necessary here.