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1 Introduction

When can we say that there is sufficient evidence? A large issue is with the phrasing of
conditional probability. There’s a difference between
P (winning | not committed fraud)) and P (committed fraud | winning). The relative
probabilities are important.

H1, H2: hypotheses

E: evidence/data

P (H1 | E)

P (H2 | E)
=
P (H1 ∩ E)

P (H2 ∩ E

=
P (E | H1)P (H1)

P (E | H2)P (H2)

=
P (E | H1)

P (E | H2)
× P (H1)

P (H2)

∴
P (H1 | E)

P (H2 | E)︸ ︷︷ ︸
posterior odds

=
P (E | H1)

P (E | H2)︸ ︷︷ ︸
likelihood ratio

× P (H1)

P (H2)︸ ︷︷ ︸
prior odds

Questions:

• When do observations support a hypothesis?

• What does this mean?

• What should I do next? What should I believe?

Evidence are data that make you change your assessment of the hypotheses
of interest. It doesn’t tell you what to believe, but how to change your belief. What to
do depends on the risks and consequences.

The likelihood ratio is the extent to which you should change your mind.
The evidence is what determines the likelihood ratio.
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1.1 Exercise 3.13

E: driver tests positive on breathalyzer
+: too much alcohol
−: below limit

LR =
P (E | +)

P (E | −)
=

0.99

0.10
= 9.9

Then:

P (+ | E)

P (− | E)
= LR× prior odds = 9.9×

given in ex.︷ ︸︸ ︷
P (+)

P (−)

= 9.9× 0.1

9.9
= 1.1

P (+ | E)

P (− | E)
=

x

1− x
= 1.1

x =
11

21

2 Benchmarking

How do you quantify the likelihood ratio? Do a benchmark experiment.
Example with two hypotheses:
H1: box has all white balls
H2: box has 50% white, 50% black balls
E: drawing 5 white balls in a row (with replacement)

P (E | H1)

P (E | H2)
=

1
1
32

= 32 = LR

Then, if some experiment has LR = 357, compared to benchmark, it’s about as likely
as drawing 8-9 white balls in a row. But you still can’t say whether the situation is H1

or H2, because it depends on the prior odds.

3 General LR properties

The likelihood ratio cannot be wrong : given the evidence, the LR points a certain way.
But it can be misleading and point towards a hypothesis that’s not true.

Probability theory depends on the available information. Image placing bets for or
against something – that’s a first indication of the probabilities. How often can the
LR be misleading, and to what degree?

Example: throw a pin, lands pin up with

{
H1 : p = 1

2

H2 : p = 3
4
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One throw:

outcome LR

up (1
2
)/(3

4
) = 2

3

down (1
2
)/(1

4
) = 2

If H1 is true, the average LR is

1

2
× 2

3
+

1

2
× 2 =

1

3
+ 1 =

4

3

If H2 is true, the average LR is

3

4
× 2

3
+

1

4
× 2 = 1

With two throws, the average LR will be:

• if H1 true, (4
3
)2

• if H2 true, 1

Average LR:
∑
P (outcome)× LRoutcome

If we compute LR for H1 vs H2 then:

• If H1 is true, on average LR > 1

• If H2 is true, on average LR = 1

• The following always holds:

P (LR = x | H1)

P (LR = x | H2)
= x

The LR is a sufficient statistic for the two hypotheses, you won’t learn more from seeing
the evidence. So if we know LR(E), we don’t need to know E itself.

The probability of misleading evidence is

P (LRH1,H2(E) ≥ k | H2) ≤
1

k

regardless of H1 and H2.
LR is not additive, but multiplicative:

LR(E1, E2) = LR(E1)× LR(E2 | E1)

= LR(E1)× LR(E2) [if independent]

log(LR(E1, E2)) = log(LR(E1)) + log(LR(E2 | E1))

log(LR) > 0 : support H1

log(LR) = 0 : no evidence either way

log(LR) < 0 : support H2
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3.1 Exercise 4.1

3.1.1 What’s the likelihood ratio in favour of accused’s guilt?

P (E | H1) = 1

P (E | H2) =
1

10000

LR =
1
1

10000

= 10000

3.1.2 How can the value be used?

All you can do with the LR is to update the prior odds by multiplying.

3.1.3 What difference would it make if there were a 1% chance of matching
results when in reality they are different?

P (E | H1) = 1 unchanged

P (E | H2) = 0.01

LR =
1

0.01
= 100

3.1.4 Extra: what if, in 1% of chases, lab mistakenly says there is no match
when there really is one?

P (E | H1) = 0.99

P (E | H2) =
1

10000
unchanged from original

LR =
0.99

1
10000

= 9900

4 Assignment 1 Review

Definitions:

H(1) : All cards in deck are labelled 1

H(i) : All cards in deck are labelled i

Hn : Deck is normal

E : Choosing a card with label 1

How do you derive the result directly?

4



Alex Balgavy

P (E | H(1)) = 1

P (E | not H(1)) =
P (E ∩ not H(1)

not H(1)

=
p× 1

52

1− 1−p
52

normal deck and choosing 1 out of it

=
p

52− (1− p)
multiply by 52

=
p

51 + p

LR =
P (E | H(1))

P (E | not H(1))

=
1
p

51+p

=
51 + p

p

5 From Data to Decision

The question now is, “what should I do?”

5.1 With prior probabilities: Bayes rule

Example – nuchal scan of fetus, to assess probability of trisomy 21. Scan produces
evidence E. Hypotheses H1 : trisomy 21, H2 : no trisomy 21. P (H1) is given, based on
age of mother:

Young mother:
P (H1)

P (H2)
=

1

10000
, action A1 if LR ≥ 40

Old mother:
P (H1)

P (H2)
=

1

5
, action A1 if LR ≥ 1

50

Then compute posterior odds:

P (H1 | E)

P (H2 | E)
= LR× P (H1)

P (H2)

If LR = P (E | H1)
P (E | H2)

large enough, make a decision:

• A1: Further testing, or

• A2: no action

In The Netherlands, “large enough” means ≥ 1
250

.
For young mothers, no more tests unless strong evidence for trisomy 21. For old

mothers, do further test unless strong evidence against trisomy 21. Result depends not
just on LR, but on product of LR with prior odds.
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5.2 Without prior probabilities: frequentist approach

Suppose, if H1 (the “null hypothesis”) is true, we take action A1, and if H2 is true, we
take action A2. The options are:

A1 A2

H1 true positive, sensitivity false positive, type I error

H2 false negative, type II error true negative, specificity

Often we like to control the probability of a type I error, called α. β is the probability
of a type II error (P (decide A1 | H2)).

5.2.1 Decision procedure

1. Make probability distributions for evidence E you will gather

2. Define a way to decide – a rejection region R (subset of all possible evidence)

3. If evidence E turns out to be in R, reject H1 (choose action A2). Otherwise, choose
A1.

Such that:

• If H1 is true, P (E ∈ R | H1) = α (fixed, often 0.05).

• Preferably P (E ∈ R | H2) = 1− β as large as possible (this is sometimes called the
“power of the test”).

5.2.2 Example

The same thumbtack, with H1 : p = 1
4
, collecting data from 30 trials. If H1 is true, X

successes, observe X = x. How do you choose rejection region R? One way is to select
the most unlikely outcomes in R until their joint probability to happen is too large. E.g.
R = {0, 1, 2, 3, 13, 14, 15 . . . 30}, this would give α = 0.03.

Well, if there is no alternative, β does not exist. So, take H2 : p3
4
.

If there are x successes, then

LR(X) =
P (X = x | p = 1

4
)

P (X = x | p = 3
4
)

=

(
30
x

)
(1
4
)x(3

4
)30−x(

30
x

)
(3
4
)x(1

4
)30−x

[binomial distribution X ∼ B
(

30,
1

4

)
]

=
1
4x

330−x

430−x

3x

4x
1

430−x

=
330−x

430

3x

430

=
330−x

3x

= 330 − 2x
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We also have the property that

P (X = x | p =
1

4
) = P (X = 30− x | p =

3

4
)

Based on the result, then decide:

• If x < 15, LR > 1 and supports H1 : p = 1
4

• If x = 15, LR = 1

• If x > 15, LR < 1 and supports H2 : p = 3
4

The table for this binomial distribution with the corresponding LRs is

LR Rejection region R α β α + β

LR ≤ 729 x ≥ 12 0.0506 ≈ 0 0.0506

LR ≤ 81 x ≥ 13 ∼ 0.0215 ≈ 0 0.0215

LR ≤ 9 x ≥ 14 ∼ 0.0081 0.0002 0.0083

LR ≤ 1 x ≥ 15 0.0027 0.0008 0.0035

LR ≤ 1
9

x ≥ 16 0.0008 0.0027 0.0035

x ≥ 17 0.0002 0.0081 0.0083

etc.

{0, 1, 2, 3, 13 . . . 30} ∼ 0.03 ≈ 0 ≈ 0.03

5.2.3 Neyman-Pearson lemma

If LR-threshold is used for decision making, eg.

Rt = {E|LR(E) ≤ t} t is threshold, whatever number

Then you get some{
αt = P (LR(E) ≤ t | H1)

βt = P (LR(E) > t | H2) (< 1
t
)

Suppose I have another procedure with rejection region R and error rates αR and βR.
If αR < αt, then βR > βt.

So, LR is optimal in the sense that it is impossible to improve upon both αt and βt
at the same time. Therefore, there is no conceptual reason to use a different procedure
(though there may be a practical reason).

With t = 1, the sum of α + β is minimal.
In the example, with α = 0.05, we get 5 = 729.

R729 = {x ≥ 12}

That is, if x ≥ 12, LR = 729. Evidence supports H1, but H1 is rejected.
Error rates are predictive, they belong to a procedure for decision making:
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• If H1 true: probability α of error.

• If H2 true: probability β of error.

It’s not true that if you decide for H1, there is a probability α that you made an error!

5.2.4 Frequentist vs Bayesian statistics

Frequentist Bayesian

no priors priors

predicting data explaining data

LRs for decision making LRs for updating odds, then decision making

If you don’t have priors and no good way to estimate them, it may be better to go
with the frequentist approach and accept the errors that come with it.

6 Neyman-Pearson

To recap, the LR “decides” which hypothesis best explains data. Data-driven hypotheses
are allowed, but since the posterior odds identity is true, a high LR is compensated by
small prior odds.

Procedure:

1. Choose α

2. Choose t, with t such that

P (LR < t | H1) = α

Choose A1 if LRH1,H2)(E) ≥ t

This means that we choose A2 while there is evidence for H1.

6.1 Example (building on the binomial coin from the previous
lecture)

A1 : θ = 1
4
, H2 : θ = 3

4
, α = 0.05

Choose A1 if LR ≥ 729 (#successes ≥ 12). Why? Because you insist on a small α.

7 What if only the final decision is given?

What happens if you only get “an expert’s opinion” and the final decision they took?
You can still figure out the evidential value.

P (E1 | H1)

P (E1 | H2)
=

1− α
β

P (E2 | H1)

P (E2 | H2)
=

α

1− β
If β is small, LR increases and you get high evidential value.
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8 P-values: what’s wrong with them?

8.1 Example: researchers’ experiments

Goal is to disprove success probability p = 1
2
. 20 experiments, the result is 14 successes.

α = 0.05, H1 : p = 1
2
, H2 : p 6= 1

2
.

Compute P (≥ 14∪ ≤ 6 | H1) = 0.23. Since this is > α, not significant enough so
can’t reject H1. But 15 successes would have done it, with probability of 0.0412. So do
20 more trials, with 19 successes. Then P (≥ 33∪ ≤ 7 | H1) = 0.000422.

But rejection of H1 is incorrect here! After 40 experiments, P (≥ 27∪ ≤ 13 | H1) =
0.05. The total critical region is:

• ≤ 5∪ ≥ 15 if 20 experiments

• ≤ 13∪ ≥ 27 if 40 experiments

Total probability is ≥ 0.05
So what if we do 20 experiments, possibly stopping after 10? Reject H1 if either:

• After 10 exp. ≥ 9∪ ≤ 1 successes

• After 20 exp. ≥ 16∪ ≤ 4 successes

Probability under H1 is ≤ 0.05.
Then, results are: after 10, 3 successes; after 20, 5 successes. So H1 is not rejected.
Another researcher only looks after 20 experiments, so for them, 5 successes means

reject!
It’s strange that we are using probabilities of outcomes we never saw to interpret the

evidence. The LR approach doesn’t have this problem.

8.2 Example: ability to see color

You have 20 colors. Experiment 1: for people that don’t see green, reject p = 1
2

if
#successes = {0,1,9,10}. Experiment 2: H1 : p = 1

2
for all colors, reject H1 if at least

one person gets 0 or 10.
Result: experiment with green has 9 successes, experiment with all others in {1,2,...9}.

What then? Reject and don’t reject at the same time?
Other experiments should not have an effect on evidential value of an experiment.

8.3 Example: one-tailed vs. two-tailed

Take p to be unknown success probability. α = 0.05, 100 experiments. H : p = 1
2
, reject

H if successes ≤ 59∪ ≥ 61. H ′ : p ≤ 1
2
, reject H ′ if successes ≥ 59.

Suppose 60 successes. Reject p ≤ 1
2

but not p = 1
2
? Wtf?
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8.4 Example: changing alpha

H : p = 1
2
, 40 experiments, α = 0.05. P (≥ 29∪ ≤ 11 | H) = 0.0003.

The researcher sees that α = 0.01 would also be ok, so they claim to reject H at level
α = 0.01.

This is wrong! α belongs to the whole experiment, it does not relate to an individual
outcome. By changing α from experiment to experiment, it loses the only interpretation
it has.

9 P-values of LRs

Suppose LR = 47. The p-value is then P (LR ≥ 47 | H2). The idea is that, if p-value is
very small, then the LR of 47 is extreme for H2. If it’s large, then the 47 is ‘normal’ for
H2.

However, this still has no evidential value. LR measures strength of evidence. The
p-value tells you how rare such a LR is. However, once you have evidence, it doesn’t
matter how frequently evidence of that strength occurs.

9.1 Example: genomes

Two people with genomes g1, g2. H1 : siblings, H2 : unrelated.
You can take different types of LRs:

LRH1,H2(g1, g2) =
P (g1, g2 | H1)

P (g1, g2 | H2)

LR′ =
P (g2 | g1, H1)

P (g2 | g1, H2)

LR′′ =
P (g1 | g2, H1)

P (g1 | g2H2)

These are all basically the same. Take notation p1 = P (g1), p2 = P (g2). p1(g2) =
P (g1 for a sibling of someone with g2). p2(g1) = P (g2 for a sibling of someone with g1).

Then we can rewrite the LRs from above:

LRH1,H2(g1, g2) =
p1p2(g1)

p1p2
=
p2(g1)

p2

LR′ =
p2(g1)

p2

LR′′ =
p2(g1)

p2

The p values will be different though, because depending on the fixed genome, the
frequency of how often it occurs will be different. This would lead to different actions,
even though the LRs are identical, and thus so is the evidence.
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9.2 Example: disease and test results

Take H1 : disease present, H2 : disease absent.
Experiment 1:

+ -

H1 0.94 0.06

H2 0.02 0.98

LR(+) =
P (+ | H1)

P (+ | H2)
=

0.94

0.02
= 47

LR(−) =
P (− | H1)

P (− | H2)
=

0.06

0.98
=

1

16

Experiment 2 (“0” means experiment is not carried out):

+ 0 -

H1 0.47 0.5 0.03

H2 0.01 0.5 0.49

LR(+) = 47

LR(−) =
1

16

Experiment 3 (“*” is negative result or no experiment):

+ *

H1 0.47 0.53

H2 0.01 0.99

LR(+) = 47

All of the LRs are the same. So essentially, if a “+” is obtained, the evidential value
is always the same no matter how it was obtained.

Per experiment, P (LR ≥ 47 | H2) =

1. 0.02

2. 0.01

3. 0.01
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These are not all the same!
The p-value relates to the entire procedure, that’s why it’s not the same. The LR

relates to an individual outcome, so it’s always the same.

10 Why confidence intervals are similarly fucked

Recall testing H1 vs H2: define rejection region R, s.t. if sampled data are in R, you
“reject H1” (take some action). Otherwise, do not reject.

P-values define R in terms of what might happen if H1 is true, s.t. total probability
for data to be in R is α. The point is that you can’t interpret data in R as evidence
against H1.

Neyman-Pearson: define R using LR threshold t. R{E|LR(E) ≤ t} gives you opti-
mality.

Why p-values suck (recap):

• do not measure strength of evidence in E against H1

• they are ambiguous (several ways of defining them)

• the probability α is a property of the procedure that you do (how data are gathered),
not of the obtained data

10.1 Confidence intervals

Say we have a model (e.g. a Binomial distribution) that generates the data and has
unknown param θ that we want to estimate. Example: θ mean height of people, model
N(θ, σ2).

A CI of 1− α consists of two functions on data that can be obtained, θmin and θmax,
such that if θ is true value of the param of interest, it lies between θmin(E) and θmax(E)
with probability 1− α if we repeat sampling of E.

10.1.1 Commonly encountered 95% CI

For data from N(θ, σ2), if I sample n points x1, . . . , xn, estimate θ by

θ̂ = x =
1

n

n∑
i=1

xi

And take as 95% CI
[
x− 1.96 σ√

n
, x+ 1.96 σ√

n

]
. 1.96 is the z-score for the CI.

Why? It gives the smallest 95% CI for such data.

10.1.2 Binomial data (2 possible outcomes)

Data x1, . . . , xn, interested in “success prob” p of p = P (x = 1).
With success probability p, in n points x1, . . . , xn, there are k successes (ones) with

prob

P (X = k) =

(
n

k

)
pk(1− p)n−k

12
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(Binomial distribution probability).
A 95% CI can b e computed with this, but a good approximation is

θmin,max = p̂± 1.96

√
p̂(1− p̂)

n

where p̂ = k
n
.

The CI at level 1−α contains exactly the values that would not lead to rejection with
significance level α (i.e. p-value ≥ α).

10.2 Problems with CIs

CIs suffer from the same problems as p-values:

• α is a property of the procedure, not of any realized outcome

• ambiguity: lots of choices possible

10.2.1 Example

Want to estimate θ, gather data x.

P (x|θ) =

{
1
2

x = θ
1
2

x = θ + 1

Gather two points x1, x2. CI defined as
[
θmin = min(x1, x2), θmax = max(x1, x2)

]
This is a 75% CI.
But if data are x1 = 28, x2 = 29, then CI is [28, 29] and definitely contains θ. If

x1 = x2 = 30, then CI is [30], θ could be 29 or 30. If the values for θ are equally likely,
50% chance to contain θ.

10.2.2 Example

With n points from N(µ, σ2) normal dist, 95% CI is x± 1.96 σ√
n
.

Let n = 1 or n = 100 with probability 1
2
. What’s a good 95% CI?

1. If n = 1, 95% CI is x1 ± 1.96σ. If n = 100, 95% CI is x± 1.96 σ
10

. But you can do
better.

2. If n = 1, x1± 1.62σ (91% CI). If n = 100, x± 2.72 σ
10

(99% CI). Overall, this is also
95% CI.

Why number 2? Expected width of intervals:

1. 1
2
(2× 1.96σ) + 1

2
(2× 1.96 σ

10
= 1.96σ + 0.196σ = 2.156σ

2. 1
2
(2× 1.62σ) + 1

2
(2 ∗ 2.72 σ

10
= 1.62σ + 0.272σ = 1.892σ
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10.2.3 Example

Heart/lung problems with newborns. Conventional medical treatment not very adequate,
survival rate not precisely known but 20%. New, promising treatment ECMO, survival
rate estimated possibly around 80%. Study ECMO vs CMT. How large should it be?

Take n patients, number of recoveries is x.
Say, test θECMO = 0.8 vs θECMO = 0.2. If x recoveries, LR is

P (x | θ = 0.8)

P (x | θ = 0.2)
=

(
n
x

)
(0.8)x(0.2)n−x(

n
x

)
(0.2)x(0.8)n−x

=
4x

4n−x
= 42x−n

= 24x−n

If I want LR ≥ 32(≥ 25), I need 4x− 2n ≥ 5. So x ≥ 2n+5
4

.
We can compute probability to get sufficiently strong evidence in favor of the true

hypothesis, or probability of strongly misleading evidence, or probability of not obtaining
strong evidence.

Now suppose 13 out of 17 recoveries. What does this say about θECMO?
We could CI that shit, but CIs have problems.
The best θECMO = 13

17
= 0.76. How much better than θ = 0.5?

P (13 out of 17 | θ = 0.8)

P (13 out of 17 | θ = 0.5)
= 11.5

A likelihood interval. E.g. 1
32

LI is all values θ such that LR for θ = 13
17

vs θ = θ0 is
at most 32.

11 Notes from Ioannidis

These are notes from the class when discussing the article “Why Most Published Research
Findings Are False” by Ioannidis.

S : significant result (p < 0.05 ).

P (H0 | S)

P (H0 | S)
=
P (S | H0)

P (S | H0)
× P (H0)

P (H0)︸ ︷︷ ︸
R in the article

P (S | H0)

P (S | H0)
=

1− β
α

So 1−β
α
×R > 1 for H0 to be false.

In notation of Ioannidis, (1− β)R > α.

Odds PH0

P (H0)
= R are equivalent to

P (H0) =
R

R + 1
P (H0) =

1

R + 1
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.
Total number of research questions c is then:


c R
R+1

if H0 true −→

{
S(H0 true) = (1− β)c R

R+1

S(H0 true) = βc R
R+1

c 1
R+1

if H0 true −→

{
S(H0 true) = αc 1

R+1

S(H0 true) = (1− α)c( 1
R+1

)

Ioannidis: β = 0.2, α = 0.05. So

LR(S) =
1− 0.2

0.05
=

0.8

0.05
= 16

11.1 Bias

Bias is when you get more significant findings than warranted by the data. E.g. you try
to ‘clean up the data’. But then your original error rates don’t apply anymore.

Originally,

P (S | H0) = α

P (S | H0) = 1− β

Now,

P (S | H0) = α + (1− α)u

P (S | H0) = (1− β) + βu

where u is the probability of data becoming significant when they are not.
Now, with bias, LR of S for H0 vs H0 becomes

P (S | H0)

P (S | H0)
=

1− β + βu

α + (1− α)u

.
PPV = P (H0 | S). Plot y-axis odds P (H0 | S)

P (H0 | S) , x-axis u.

Suppose several teams:

• all the same research question

• all the same α and β

• result is published as soon as at least 1 team finds statistically significant result

S : at least one team has p < 0.05.

P (S | H0)

P (S | H0)
=

1− βn

1− (1− α)n

As n goes to infinity, the result tends towards 1.
Corollaries:
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• smaller studies = less likely for findings to be true

• smaller effect sizes = less likely for findings to be true

• greater number and less selection of tested relationships = less likely for findings to
be true

• greater flexibility = less likely for findings to be true

12 The Paradox of the Ravens (Hempel)

H: all ravens are black. Equivalent to saying “all not black things are not ravens”. So
observation of non-black should be evidence for H.

Suppose two vases, one with only ravens (R, amount nR), and one with only non-
ravens (NR, amount nNR ). PR is probability of black in raven vase, PNR is probability
of black in non-ravens.

X is a draw from R. HA : PR = 1, HB : PR = p < 1.
Evidence is that X is black.

LRA,B(E) =
P (Xisblack | A)

P (Xisblack | B)

=
1

p
> 1

So this is evidence that all ravens are black.
Y is a draw from NR. Evidence is that Y is white.

LRA,B(E ′) =
P (Y iswhite | A)

P (Y iswhite | B)

= 1 A,B do not affect NR, just R

That’s not evidence for H. It’s neutral.

12.1 But there’s a big but

What if we do this:

1. Mix all the things

2. Choose non-black object from the mix

3. Suppose this non-black object came from NR

4. Claim this is evidence for H

Z is outcome, R or NR.
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12.1 But there’s a big but Alex Balgavy

LRA,B(Z = NR) =
P (Z = NR | A)

P (Z = NR | B)

=
1

P (Z = NR | B)

P (Z = NR) =
num of non-black objects in NR

total num of non-black objects

=
nNR(1− PNR

nNR(1− PNR) + nR(1− PR

∴ LRA,B(Z = NR) =
1

P (Z = NR

=
nNR(1− PNR) + nR(1− PR

nNR(1− PNR

= 1 +
nR(1− PR)

nNR(1− PNR
> 1, if PR is not 1 (assumed)

So this is evidence for H! (though not very strong evidence)
So, two ways of sampling, which one you use is definitely relevant. If you select

something that you know is not a raven, and see that it’s not black, that’ snot evidence.
If you randomly select something that’s not black, and see that it’s not a raven, it is
evidence.
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