Linear Algebra

Table of Contents

Linear transformations

definitions:

a projection transformation happens if you go to a lower dimension (e.g. $x_3$ becomes 0). a shear transformation happens if a 2D square is tilted sideways into a parallelogram.

a transformation T is linear if: i) $T(u + v) = T(u) + T(v)$ for all $u,v \in \text{Domain}(T)$ ii) $T(cu) = cT(u)$ for all scalars c and all $u \in \text{Domain}(T)$

linear transformations preserve operations of vector addition and scalar multiplication.

if T is a linear transformation, then:

given scalar r, and $T: \Re^2 \rightarrow \Re^2$ by $T(x) = rx$

every linear transformation $\Re^n \rightarrow \Re^m$ is a matrix transformation $x \mapsto Ax$.

$A = [[T(e_1) \dots T(e_n)]$, where $e_j$ is the jth column of the identity matrix in $\Re^n$

geometric linear transformations of $\Re^2$:

Reflections Contractions/expansions and shears Projections

types of mappings:

for mapping $T: \Re^n \rightarrow \Re^m$ and standard matrix $A$: