Logical Verification

Table of Contents

Backward proofs

This is like going up the proof tree.

Tactical propositions look like this:

lemma lemma_name :
    statement :=
begin
    proof
end

It can also be a one-line proof, with by:

lemma lemma_name :
    statement :=
by tactic

Tactics:

Rewrite rules

This wasn’t covered in the lecture, but it’s useful so I’ll add them here.

Implication Conjunction Negation Disjunction Bi-implication ("if and only if") True & False
implication-elimination.png and-elimination.png negation-elimination.png disjunction-elimination.png bi-implication-elimination.png falsum-elimination.png
Implication introduction conjunction-introduction.png Negation introduction disjunction-introduction.png bi-implication-introduction.png truth-introduction.png

Quantifiers

Conjunction-negation:

conjunction-negation-rule.png

Proof by contradiction:

proof-by-contradiction.png

Induction:

induction-natural-deduction-rule.png

Universal Existential
universal-elimination.png existential-elimination.png
universal-introduction.png existential-introduction.png