This is the formula sheet for the Machine Learning exam. Please print out your own copy, on a single sheet of A4 paper, and bring it with you. Note that most likely you will only need a few of these formulas. The rest are here for completeness, and so as not to give away the contents of the exam.
A and B are random variables. x and y are vectors. The elements of x are indicated by x_{i}.

linear algebra

dot product:
$\boldsymbol{x}^{\top} \mathbf{y}=\boldsymbol{x} \cdot \mathbf{y}=\sum_{i} x_{i} y_{i}$
linear regression model :
$w^{\top} x+b=y$
linear classification model :
$w^{\top} x+b>^{?} y$

probability

joint probability :
$p(A, B)$
marginal probability :
$p(B)=\sum_{a} p(A=a, B)$
conditional probability :
$p(A \mid B)=\frac{p(A, B)}{p(B)}$
Bayes' law :
$p(B \mid A)=\frac{p(A \mid B) p(B)}{p(A)}$
univariate normal pdf :
$\mathrm{N}(\mathrm{x} \mid \mu, \sigma)=$
$\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right]$
multivariate normal pdf :
$\mathrm{N}(\mathrm{x} \mid \mu, \Sigma)=$
$\frac{1}{\sqrt{(2 \pi)^{\mathrm{d}}|\Sigma|}} \exp \left[-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right]$
entropy
entropy (of random variable) :
$H(A)=-\sum_{a} p(a) \log _{2} p(a)$
entropy (of probability function) :
$H(p)=-\sum_{x} p(x) \log _{2} p(x)$
cross entropy :
$\mathrm{H}(\mathrm{p}, \mathrm{q})=-\sum_{x} \mathrm{p}(\mathrm{x}) \log _{2} \mathrm{q}(\mathrm{x})$
KL divergence (or relative entropy) :
least squares regression :
$\frac{1}{2} \sum_{i}\left(f_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}$
least squares classification:
$y_{i}=-1$ for neg. x_{i} and 1 for pos.
$\frac{1}{2} \sum_{i}\left(f_{\theta}\left(x_{i}\right)-y_{i}\right)^{2}$
SVM classification (y_{i} as before) :
$\frac{1}{2}\|w\|+C \sum_{i} \max \left(0, y_{i}\left(w^{\top} x+b\right)-1\right)$
SVM dual (y_{i} as before) :
$-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{\top} x_{j}+\sum_{i} \alpha_{i}$
st. $0 \leqslant \alpha_{i} \leqslant C$ and $\sum_{i} \alpha_{i} y_{i}=0$
logistic regression :
$y_{i}=0$ for neg. x_{i} and 1 for pos.
$\operatorname{loss}(\theta)=\sum_{i} H\left(y_{i}, q_{i}\right)$ with
$\mathrm{q}_{\mathrm{i}}=\sigma\left(w^{\top} \boldsymbol{x}_{\mathrm{i}}+\mathrm{b}\right)$
activations
sigmoid : $\sigma(x)=\frac{1}{1+\exp (-x)}$
relu: $r(x)=x$ if $x \geqslant 0,0$ otherwise

performance

accuracy: $(T P+T N) /$ total
t.p.r./recall : TP/(TP + FN $)$
f.p.r. : $\mathrm{FP} /(\mathrm{TN}+\mathrm{FP})$
precision: TP/(TP + FP)

miscellaneous

$\log _{2}(x)=\frac{\log _{10}(x)}{\log _{10}(2)}=\frac{\ln (x)}{\ln (2)}$
$\mathbb{E}(f(A)+g(B))=(\mathbb{E} f(A))+\mathbb{E} g(B)$
$\mathbb{E}(\operatorname{cf}(A))=c \mathbb{E} f(A)$ for const. c

The following section is your cheat sheet. You are allowed to write anything in the box and bring it with you into the exam, so long as it is written by hand. Do not write outside of the box, do not write on the back of the paper. If you violate the rules, the formula sheet will be taken away.

