Fundamental SI units
- meter (m) – length
- kilogram (kg) – mass
- seconds (s) – time
- ampere (A) – electric current
- kelvin (K) – temperature, 0°C = 273 K
- mole (mol) – amount with same particles as atoms in 12g of carbon-12
Derived units
- Newton (N) – kgms⁻² – force
- Pascal (Pa) – kgm⁻¹s⁻² – pressure
- Hertz (Hz) – s⁻¹ – frequency
- Joule (J) – kgm²s⁻² – energy
- Watt (W) – kgm²s⁻³ – power
- Coulomb (c) – As – charge
- Volt () – kgm²s⁻³A⁻¹ – potential difference
- Ohm (Ω) – kgm²s⁻³A⁻² – resistance
- Weber (Wb) – kgm²s⁻²A⁻¹ – magnetic flux
- Tesla (T) – kgs⁻²A⁻¹ – magnetic field strength
- Becquerel (Bq) – s⁻¹ – radioactivity
Note: $x^{-1}$ is another way to write ‘per x’, like ‘meters per second’ can be written as ‘m/s’ or $ms^{-1}$. Similarly, ‘meters per second squared’ (like for acceleration) can be written as ‘m/s²’ or $ms^{-2}$.
Important numbers
- mass of H atom – $10^{-29}$ kg
- mass of electron – $10^{-30}$ kg
- radius of Earth – 10⁷ m
- diameter of atom – $10^{-10}$ m
- diameter of nucleus – $10^{-15}$ m
- age of universe – $10^{18}$ s
Errors
- Random: cannot be avoided, e.g. scale limits, human error
- Parallax: reading from incorrect position
- Systematic: consistently wrong, e.g. incorrect calibration
Accuracy is “correctness” (small systematic error).
Precision is “repeatability”
Uncertainties
If $y = a \pm b$, then $\Delta y = \Delta a + \Delta b$.
If $y = \frac{ab}{c}$, then $\frac{\Delta y}{y} = \frac{\Delta a}{a} + \frac{\Delta b}{b} + \frac{\Delta c}{c}$.
If $y = a^n$, then $\frac{\Delta y}{y} = \left| n \left( \frac{\Delta a}{a} \right) \right|$
$\frac{\Delta y}{y} = \frac{\Delta x}{x}$: fractional
$\frac{\Delta y}{y} = \left( \frac{\Delta x}{x} \right) \times 100$: percentage
$\Delta y = y \left( \frac{\Delta x}{x} \right)$: absolute